反射镜热形变对激光器谐振腔参数的影响

张新昌 孙孟嘉 郭崇健

(山西大学)

提要:本文讨论了反射镜热形变对激光谐振腔参数的影响。在具体设计高功率激光器,特别是折迭式 CO2 激光器谐振腔时,应尽可能预先考虑这种影响。

Influence of thermal deformation in mirrors on resonator parameters

Zhang Xinchang Sun Mengjia Guo Congjian

(Shanxi University)

Abstract: Influence of thermal deformation in mirrors upon the resonator parameters is discussed. In designing a high power laser and a folded-resonator CO_2 laser in particular, it must be considered in advance as much as possible.

随着激光器功率的增大,因吸收损耗而 产生的反射镜热形变愈益显著,成为影响激 光器谐振腔参数的重要因素,特别对折迭式 CO2激光器影响尤为突出,必须加以考虑。

一、实验事实

我们用单支腔长为2米的V形折迭式 CO2激光器作实验。除输出窗外,全反射镜 均以普通光学玻璃为基片。用内调焦自准直 仪从反射镜背面监视其曲率半径的变化,发 现当激光器工作后调焦清晰位置有明显变 化。反射镜背面水冷时,镜内外表面间温差 增大,这种变化更显著。我们还用绝热性能 较好的石棉板在输出窗前匀速转动,观测激 光输出光斑大小随时间的变化。启动激光器 后,激光束在石棉板上烧灼出如图1所示的 锥形斑痕。斑痕宽度在30秒至1分钟之间 达到稳定值。

图 1 激光输出光斑尺寸随时间的变化

我们认为, t=0 时刻的起始光斑与空腔 理论计算出的光斑大小之间的差别是工作气 体的类透镜效应引起的; 而光斑此后较慢地 随时间的增大主要是反射镜的热形变造成 的。因为气体类透镜效应的建立时间可由气 体分子从激光放电管中心扩散到管壁的特征 时间来估计^[11], 对 CO₂ 激光器的工作气体估 算的 $\tau_{tr}\approx0.1$ 秒, 可见气体类透镜效应的建 立过程可视为瞬时的,实验所示的 30 秒正是 反射镜热形变的建立时间。

类透镜效应已显露出来,实验测得的焦距在 -20米以上,然而上述实验中,光斑随时 间的变化量颇大,说明反射镜基片热膨胀系 数较大时,反射镜热形变对激光谐振腔的影 响已变得更为重要。

二、反射镜的热形变

CO₂ 激光器的反射镜金膜热传导性能良 好,可粗略认为反射镜内表面是等温面;反射 镜外表面因水冷也保持某一恒定温度。忽略 放电管壁带走的一小部分热量。在热动平衡 条件下,反射镜内表面在单位时间内吸收的 热量应等于单位时间内通过镜片热传导传走 的热量:

 $P(1-r) = 4.18\beta \left(\frac{\partial T}{\partial z}\right) S \approx 4.18\beta \frac{\Delta T}{d} S$ 在上述一维热传导方程中, *P* 为激光器腔内 功率; *r* 为反射镜反射率; β是镜片基片的热 传导系数,以 β=0.002 卡/厘米·秒·度来估 算; $\frac{\partial T}{\partial z}$ 是沿管轴方向的温度梯度,近似地 认为 $\frac{\partial T}{\partial z} \approx \frac{\Delta T}{d}$; ΔT 是镜片内外表面的平均 温差; *d* 是镜片厚度; *S* 是反射镜面积(约等 于放电管口截面积)。由上式求得:

 $\Delta T \approx 120P(1-r)\frac{d}{S} = 120(1-r)\frac{Wd}{St}$ (1) 其中, W 是激光器的输出功率; t 是输出窗 透射率。

设有曲率半径为R的凹面镜,如图 2 所 示,在轴上由曲率中心O向该反射镜任意引 两矢径,夹角为 φ 。反射镜外表面的线度l''因水冷温度恒定而不变化;反射镜内表面因 吸收光能温度相对于外表面提高了 ΔT ,线 度由 $l 变为 l' = l(1 + \alpha \Delta T)$,式中 α 是反射 镜基片的热膨胀系数,对 K_9 光学玻璃 $\alpha = 90 \times 10^{-7}$ 度⁻¹。形变后反射镜曲率半径 为R',曲率中心移至O'点。由几何关系可 求得:

$$R' = \frac{l'}{\varphi'} = \frac{l(1 + \alpha \Delta T)}{\frac{l}{R} - \frac{l\alpha \Delta T}{d}} = \frac{Rd(1 + \alpha \Delta T)}{d - R\alpha \Delta T}$$
$$\approx \frac{Rd}{d - R\alpha \Delta T}$$
(2)

若反射镜原是平面镜,则:

$$R' \approx -\frac{d}{\alpha \Delta T} \tag{2}'$$

可见热形变将使凹面镜曲率半径增大,使平 面镜变成凸面镜。因此,在设计激光谐振腔 时应预先考虑反射镜曲率半径可能的变化, 我们称之为反射镜热形变谐振腔的补偿设 计。

图 2 反射镜的热形变

三、反射镜热形变对谐振腔 参数的影响

1. 对直腔的影响

式中

在腔长为 L、曲率半径分别为 R_1 与 R_2 的反射镜构成的直腔中,输出镜 R_1 因热传导 性能较好,镜内外表面间 $\Delta T_1 \approx 0$,故 R_1 不 变。激光器工作后, g 参数分别变成:

$$g_{1}' = g_{1} = 1 - \frac{L}{R_{1}};$$

$$g_{2}' = \left(1 - \frac{L}{R_{2}}\right) + \frac{120\alpha L(1-r)W}{St}$$

$$= g_{2} + MW_{\circ}$$

$$M = \frac{120\alpha L(1-r)}{St},$$

- 6 -

对给定的反射镜, *M* 是一个常数。可见 g 参数总随 *W* 单调线性增长, 它使激光输出光斑 变为:

$$\begin{split} \omega' &= \sqrt{\frac{L\lambda}{\pi}} \left[\frac{g_2'}{g_1'(1 - g_1'g_2')} \right]^{\frac{1}{4}} \\ &= \sqrt{\frac{L\lambda}{\pi}} \left\{ \frac{g_2 + MW}{g_1 \left[(1 - g_1g_2) - g_1 MW \right]} \right\}^{\frac{1}{4}} \circ \end{split}$$

2. 对折迭腔的影响

由于镜片数增多,反射镜热形变对折迭 腔参数的影响比直腔情形要复杂得多。以 图 3 所示的较简单的 V 形折迭腔为例,当 $a_1=a_2=a_{x}R_1=\infty$ (平镜输出),求出等价腔 参数为:

$$\begin{cases} N = \frac{a^2}{2\lambda L \left(1 - \frac{L}{R_3}\right)} \\ G_1 = 1 - \frac{2L}{R_3} \\ G_2 = 1 - \frac{2L}{R_3} - \frac{2L}{R_2} \left(1 - \frac{L}{R_3}\right) \end{cases}$$

当反射镜热形变后腔参数变为:

$$\begin{split} \Gamma & N' = \frac{a^{2}}{2\lambda L\left[\left(1 - \frac{L}{R_{3}}\right) + 2MW\right]} \\ G'_{1} = \left(1 - \frac{2L}{R_{3}}\right) + 4MW \\ G'_{2} = \left[\left(1 - \frac{2L}{R_{3}}\right) - \frac{2L}{R_{2}}\left(1 - \frac{L}{R_{3}}\right)\right] \\ & + 2M\left[\left(3 - \frac{2L}{R_{2}}\right) - \frac{L}{R_{3}}\right]W \\ & + 4M^{2}W^{2} \end{split}$$

利用等价腔 G 参数与 g 参数的 变 换 关 系^[2] 得:

$$\begin{cases} g_{1}' = g_{1} = 1 \\ g_{2}' = \left[\left(1 - \frac{2L}{R_{3}} \right) + 4MW \right] \left\{ \left[\left(1 - \frac{2L}{R_{3}} \right) \\ - \frac{2L}{R_{2}} \left(1 - \frac{L}{R_{3}} \right) \right] & (3) \\ + 2M \left[\left(3 - \frac{2L}{R_{2}} \right) - \frac{L}{R_{3}} \right] W \\ + 4M^{2}W^{2} \end{cases}$$

由上式可见, 折迭腔的G参数(或g参数)也

随激光输出功率 W 单调上升,但变化比直腔 显著得多;而费涅耳数 N 随 W 单调下降,即 反射镜热形变总使费涅耳数减小。值得注意 的是,V形折迭腔的费涅耳数与折转镜曲率 半径 R_a的关系极大,费涅耳数的减小主 要是折转镜的热形变造成的。因此,在设计 折迭腔时折转镜的曲率半径的选择合适与否 是极为重要的。由腔参数随激光输出功率 W 变化的单调性可以推知,反射镜的热形变 完全可能使一个稳定腔变成一个非稳定腔; 反之,也完全可能使一个过份汇聚的非稳定 空腔演变成稳定的工作腔。

图 3 V 形折迭式谐振腔

若暂不考虑气体类透镜效应的影响,平 镜输出时 TEM₀₀ 模的输出光斑半径为

$$\omega' = \sqrt{\frac{L'_e \lambda}{\pi}} \left[\frac{g'_2}{1 - g'_2} \right]^{\frac{1}{4}} \tag{4}$$

其中 L_e 为 V 形折迭腔的等效腔长,可以求出

$$L'_{e} = \frac{2L\left[\left(1 - \frac{L}{R_{3}}\right) + 2MW\right]}{\left[\left(1 - \frac{2L}{R_{3}}\right) + 4MW\right]} \tag{5}$$

而 g'2 由(3)式给出。

四、验证与修正

我们就图 3 所示的折迭腔,选取不同的 反射镜组合,以实验验证上述理论计算。设 L=2米; S=10 厘米²; d=0.5 厘米; t=45%; (1-r)=1.4%; 计算得 $M=6.72\times10^{-4}$ 。方 案一为 $R_2=R_1=\infty$, $R_3=10$ 米, $g_1g_2=0.36$ <1,空腔是稳定腔。但在 W=150 瓦时, $g'_1g'_2=1.209>1$,工作腔已热演变为非稳定

• 7 •

腔。以这种反射镜组合的激光器其最佳激光 功率不到 100 瓦;而且放电电流由 20 毫安增 至 40 毫安时,激光输出功率无明显变化。用 手轻轻扳动反射镜使腔模变化,输出功率亦 无明显变化。这一现象表明,腔内存在很强 的损耗,且这种损耗是随激光输出功率的增 加而迅速增长的,故使输出功率呈现饱和(见 图 4)。但采用方案二时, $R_1 = \infty$ 、 $R_2 = 10$ 米、 $R_3 = 5$ 米, $g_1g_2 = -0.008 < 0$,空腔是非稳 定腔。当W = 150 瓦时, $g_1'g_2' = 0.266 < 1$,工 作腔变成稳定腔,即反射镜热形变使一个高 损耗腔变成了低损耗腔,激光输出功率随放 电电流的变化不呈现饱和而有明显的极值, 最佳激光功率能达到设计值 150 瓦以上(见 图 5),完全证实了上述理论计算。

按照 (3)、(4) 与 (5) 式求出上述方案二 的谐振腔在不同激光输出功率下的等效腔长 *L*^e 与腔参数 g² 的数值以及相应的 TEM₀₀ 和 TEM₁₀ 模光斑尺寸, 列于表 1。

实测实验结果列于表 2。

(稳定腔)时,输出功率有明显极值

激光功率 (瓦)	0	25	50	75	100	125	150	175	200
<i>L'e</i> (厘米)	12×10^{2}	9.48×10^{2}	7.98×10^{2}	6.98×10^{2}	6.26×10^{2}	5.73×10^{2}	5.31×10^{2}	4.98×10^{2}	4.71×10^{3}
g_2^{\prime}	-0.008	0.00939	0.0376	0.0772	0.129	0.192	0.268	0.358	0.461
2ω'(TEM ₀₀) (毫米)	174. S. S. S.	3.53	4.61	5.22	5.70	6.14	6.59	7.08	7.67
2ω' (TEM ₁₀) (毫米)		6.11	7.99	9.04	9.88	10.63	11.4	12.27	13.28

表 2

放 电 电 流 (毫安)	5	10	15	20	25	30	35	40	45	50	55	60
激光功率 (瓦)	26.0	62.0	81.0	101	119	127	136	140	146	152	156	152
光斑直径 (毫米)	3.8	8.2	9.5	10.4	11.5	12.0	12.5	12.8	13.0	13.0	13.0	13.0
模 式 (TEM)	00	10	10	10	10	10	10	10	10	10	10	10

将上述实验结果与理论计算同绘于图 6 上比较,看出在功率较小时模斑大小的实验 值与理论值基本一致;当激光输出功率较大 时实验值大于理论值,其原因是随着放电电 流的增加,气体类透镜效应逐渐显著。如果 同时计入反射镜热形变与气体类透镜效应,则能够得到与实验完全符合的计算结果。具 体考虑如下:

在 V 形折迭腔中往返传播的 激光 束相 当于连续通过一系列透镜,透镜之间的空间 中充满气体类透镜介质。我们取透镜系列的 一个完整周期(图7)计算其光学往返矩阵^{[11}:

$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cosh \gamma L & \gamma^{-1} \sinh \gamma L \\ \gamma \sinh \gamma L & \cosh \gamma L \end{bmatrix}$
$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \cos h\gamma L & \gamma^{-1} \sin h\gamma L \end{bmatrix}$
$\left[-\frac{2}{R_3'} \ 1\right] \left[\gamma \sin h\gamma L \cos h\gamma L \right]$
$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \cos h\gamma L & \gamma^{-1} \sin h\gamma L \end{bmatrix}$
$\left[-\frac{2}{R_2'} \ 1\right] \left[\gamma \sin h\gamma L \cos h\gamma L\right]$
$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \cosh \gamma L & \gamma^{-1} \sinh \gamma L \end{bmatrix}$
$\left[-\frac{2}{R_3'} \ 1 \right] \left[\gamma \sin h\gamma L \cos h\gamma L \right]$

其中

$$R'_{2} = \frac{R_{2}d}{d - R_{2}\alpha \Delta T_{2}} = \frac{2LR_{2}}{2L - 2MWR_{2}};$$
$$R'_{3} = \frac{R_{3}d}{d - R_{3}\alpha \Delta T_{3}} = \frac{2LR_{3}}{2L - 4MWR_{3}};$$

取W = 150瓦, $R'_2 = 20.16$ 米, $R'_3 = 10.08$ 米, γ 值以 1.6×10^{-3} /厘米近似估计,则上述矩 阵值为 $\begin{bmatrix} -0.0306 & 4.2555 \\ -0.2342 & -0.0285 \end{bmatrix}$ 。因为这一光 学往返矩阵

 $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 2g_1''g_2'' - 1 & 2L_e''g_2'' \\ \frac{2}{L_e''}g_1''(g_1''g_2'' - 1) & 2g_1''g_2'' - 1 \end{bmatrix}$ $the A + D/2 \approx 2g_1''g_2'' - 1; \ the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of the B = 2L_e''g_2'', \ the B term of term$ 一透镜序列是由输出窗算起, $g_1''=g_1=1$,利 用上式解得 $g_2''=0.485$; $L_e''=4.93$ 米, L_e'' 是 等效二镜腔的腔长。利用与(4)式相同的公 式求得 TEM₀₀ 模光斑半径 $\omega''=3.79$ 毫米, 直径为7.58 毫米。于是对 TEM₁₀ 模来说, 输出光斑直径为13.13 毫米,与实验数值13 毫米十分接近。

图 7 空间充满类透镜介质的透镜序列的 一个周期及其等效二镜腔

五、讨 论

若激光器的功率较高或者反射镜的热膨 胀系数与吸收率较大,则反射镜热形变对激 光谐振腔参数的影响是不可忽视的。特别是 对于输出功率大于100瓦的折迭式CO2激 光器,为便于商品化而采用成本较低的玻璃 放电管与普通光学玻璃的反射镜基片时,必 须计入反射镜热形变的影响而进行预先的补 偿设计。